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0. Introduction ISPCE

The one dimensional isothermal motion of a compressible elastic fluid or solid
cen be described in Lagrangian coordinates by the coupled system

Ug + p(W)2 = 0, (0.1)

we - UZ = 0. (0.2)

Here u denotes the velocity, w the specific volume for a fluid (or displacement
gradient for a solid), and -p9 is the stress which must be determined through a
constitutive relation to wo. For many materials a natural condition placed on p is
that p'(w) < 0 for all values of wo (or all positive values of wo) depending on the
context of the problem. This makes (0.1), (0.2) a coupled system of hyperbolic
conservation laws. In this paper, however, we shall consider the case where p has a
graph illustrated by Figure 1. For convenience p will be globally defined, smooth,
with

< <0 W <a, W >8; 9>0, a< <fl

p"(ct) > 0, J%(6) < 0.
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Figure 1.

This type of constitutive relation is usually associated with a van der Waa's
fluid where RT a

p(w) =P()=w - b w 2'

and R, a, b are positive material constants, T is the temperature. Here we need
nothing as specific as the van der Waals constitutive relation though our results
will strongly depend at times on the global behavior of p as jwj --+ 0o.

The reason for this non-standard choice of p is that it serves as a prototype
problem for the dynamics of a material exhibiting changes of phase. For example
ina van der Waals fluid the states w < a are viewed as liquid while states with
w > P are viewed as vapor. The non-monotonicity of p allows co-existence of
liquid and vapor phases.

The evolution of (0.1), (0.2) will be governed by initial data. Here we pose
piecewise constant data

U-. to.. z< 0
U(Z,0)= u(x',0)=

U+. w+ z O :

(0.3)

which makes (0.1)-(0.3) into a mixed hyperbolic-elliptic Riemann initial value prob-
km which we call problem P.
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The classic method of solution of the Riemann problem is based on the con-
struction of shock and wave curves for (0.1), (0.2). For van der Waals like mate-
rials discussions of this approach have been given first by R. James [1] and later
by M. Shearer (2], (3]. The difficulty with this procedure is that even if shock
admissibility conditions are known a priori it is not obvious in what manner the
full solution which is a composite of shock and rarefaction waves is admissible.
For example in (12], Shearer proves existence of solutions to P when the data w-,
w+ are in different phases but close to the well known Maxwell line. Each discon-
tiluity in Shearer's solution is admissible with respect to the viscosity-capillarity
criterion discussed below.

The investigation here is based on a different approach. First we recall that
earlier work (4], (5], (61 has suggested a reasonable admissibility criteria for (0.1),
(0.2) to be the following viacoasity-capillarity criterion. Namely weak solutions of
(0.1), (0.2) will be admissible if they are limits boundedly a.e. of solutions u,, wg,
of the system. ,,g +p ,.1w)5  ,., - ,.2Aw ==, (0.4)

Wt - U3 = 0, (0.5)

as v-- 0+.

This system is derived from Korteweg's theory of capillarity where the total
stress is written as the sum -p(w) ± VU. - V2Aw 33 comprising elastic, viscous,
and capillarity contributions.

As noted in [6] the substitutions

D1  T- (1 4A)1 /2  V = U - D2w bring ((0.4), (0.5))

into the parabolic form
t + p(w,)3 = Dl, 2, (0.6)

t - vs = D 2 wzx, (0.7)

when 0 < A !< 1/4. In particular the choice of A = 1/4, v = 2e would say that
admissible solutions would be limits as e --+ 0+ of solutions of (0.6), (0.7) with
D1 = D2 = e.

While (0.6), (0.7) is the common form for most artificial "viscosity" argu-
ments, Kalasnikov (1959 [13]) Tupciev (1964 [14], 1972 [151), Dafermos (1973 [7],
1974 [16]), and Dafermos and DiPerna (1976 [8]) suggested a variant advantageous
for the study of Riemann initial value problems. Within the context of (0.1)-(0.2)
the idea is to replace (0.6)-(0.7) with the system

.t + ,(W). = uz,1 (0.8)

Wt - U= =etwz, (0.9)

-N.-.



which is invariant under the transformation (z, t) -+ (ax, at), a > 0. (Here the
letter v has been replaced by its former self u.) System (0.8), (0.9) has a decided
advantage over (0.6), (0.7) in that it admits solutions that are functions of the
single variable C = -. In fact a simple computation shows that u(s), w(-) is a
solution of (0.8), (0.9), (0.3) if u( ), w(C) is a solution of the coupled system of
non-autonomous ordinary differential equations

eu" = p(w)' - tu', (0.10)

ew" = -U? - W,  (0.11)

with boundary conditions

,,(- 0o ) = u_, W(-o ) = (.0.
U(+o) = u+ w(+0o) = W+0

Here I denotes differentiation with respect to C. We will call the boundary value
problem (0.10).(0.12) problem e.

Our program can now be broken up into two steps. The first part carried out
in Sections 1 and 2 establishes that if the data are in different phases there is a
solution of Pe which exhibits one change of phase. Also we give special conditions
on the one phase data which yield a one phase solution of P. The main feature
of the proofs of these results is to note that Dafermos's arguments in [7] (which
provided the successful resolution of Pe in the case p' < 0) and those of Dafermos
and DiPerna in [8] do not directly apply. However a careful modification involving
changes of underlying function spaces, application of the Leray-Schauder degree,
and a new set of a priori estimates yield solvability of Pe.

In Sections 3 and 4 we pursue the second part of our program, i.e. to give
conditions on which solutions u(), wj() of Ae possess limits as e --+ 0+ which
solve the Riemann problem P. In the case p < 0, Dafermos [71 and Dafermos and
DiPerna [8] succeeded via this method to solve P. Here we modify the ideas of [71,
[8] to the case when p' > 0 in (a,13). In this case when the above mentioned special
data are in the same phase assumptions on p"(w) and behavior of p at infinity yield
estimates on the total variation of ue, we which combined with Helly's theorem
shows u,, w, do converge to a solution of P. For data in different phases similar
estimates in the total variation may be obtained to yield solvability of P except
in one case. The case in doubt is when there is a sequence -r -, 0 so that Iu,(r)
becomes infinite as e --+ 0+. For this case we know uE, wE possesses a subsequence
which converges a.e. to function u, w as e -. 0+. The limit functions u, w will be
a solution of the Riemann problem if and only if the pressure p equilibrates across
the stagnant phase boundary = 0, i.e., limC...o+ p(w(C)) = limf_._ p(w(C))
(Theorem 4.13). Modulo this one case we see that the idea of artificial "viscosity"
arguments which play such a vital role in the existence theory of hyperbolic conser-
vation laws can be extended to mixed hyperbolic-elliptic systems as well. (In this
regard see also [9] for a study of a viscosity approach to a mixed hyperbolic-elliptic
boundary value problem.)
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1. Existence of connecting orbits assuming a priori estimates

In this section we will establish an existence theorem for the connecting orbit
problem P, described in the introduction under the assumption of a priori esti-
mates on (u, w). With this goal in mind, consider the two-parameter family of

problems
eu" = p(w)' - U(1.1)

IE" = JAU' - {t' (1.2)

u(-L) = u-, u(L) = u+, w(-L) = w-, w(L) w+, (1.3)

where P E [0,1] and L > 1.

Theorem 1.1 Assume w- < a, w.+ > ft (w- > 6, w+ < a) and there is a
constant MO such that every possible solution of (1.1), (1.2), (1.3) with w'(C) > 0
(w'(f) < 0) when a :_ w(C) 5/ satisfies the a priori estimate

sp (I,(,)1 + I,( )! + 1)i + Iw'()1) -< Mo. (HO)

Here Mo can depend on u-, u+, w-, w+, e,p but is independent of p and L. Then
their exist solutions of P, which satisfy the constraint that w'() > 0 (w'() < 0)
if a :_ w(t) :_ R, i.e. the one phase change data connecting orbit problem posesses
a one phase change solution.

Proof. We consider the case w- < a, w.+ > 6. The case w- > 3, w+ < a
is analogous. First notice that when -= 0 (1.1), (1.2), (1.3) possesses a unique
solution

-o( = (U+ - u- ) f ! L eXp(-C 2 /2e)dC + s..L _ e pC/2e)d< + -

(W+ - W-) f!L exp(-(2/2e~dC + _

L= exp( 2 /2e)dC

Also note that wl( ) > 0, E [-L,L].

Now set U( ) = u(C) - uo( ), W(t) = w(e) - wo(f) and impose boundary

conditions
U(-L) = U(L) = W(-L) = W(L) = 0. (1.4)

f u, w are to solve (1.1), (1.2), (1.3), we see U,W must satisfy (1.4) and

eU" = 1pAwo + W)'- U', (1.5)

eW" = ;U' -pu - W'.

5 -
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Define the vectors

(U() ) = 0+W))Y(o) =1 Y) ) \-v(C) - U0o)

Then (1.4), (1.5) has the form

y"( ) -- jf( ,y)' - y )(1.6)

y(-L) = 0, y(L) = 0. (1.7)

Let v E C' ([-L, L]; R2 ). Define T to be the solution map that carries v into y
where y solves

ey"() = 1C, v)' - y'(M), (1.8)

y(-L) = 0, y(L) = 0. (1.9)

A straightforward computation shows that y(C) is given by the formula

f1 f
y() =z J exp(-( 2 /2e)dC + - f(C, v(()dC

2 -(1.10)

1 f(r x 2e )ddC

where L L7
a CLII, C2/2e)d( f((,v(C))dC

1 r ,(r)) exp( (1.11)

Notice the fixed points of pT are solutions of (1.6), (1.7) which in turn yield
solutions of (1.1), (1.2), (1.3).

It is clear that T maps C*([-L. L]; R2) continuously into C0 ([-L, L]; R 2).
Of course this implies T maps C'([-L, L]; Rl) continuously into C°([-L,L]; R2).
We now show T maps C'([-L,L ]; R2 ) continuously into C'([-L,L]; R2 ).

For this purpose let V1 , V2 E CI([-L, L]; R2 ), vi = (U1, TVI), V2 = (U2 , W2 ),
and Yi -pTvl, Y2 = pTV2 . Differentiation of (1.10) shows

- y() = (zl - z2) exP(- 2/2e)

+(Ivi()) f(, v()) o
S() ,(1.12)

jr(f(~vl(,r)) grv 2 (,r)))exp( - r Pe.
02e)d



* where z1 , z2 are defined in the obvious manner.

Now let v1 ,v 2 be in a finite ball B in C'([-L,L]; R2). In particular for
v = (U,W) in B, wo + W is uniformly bounded in R and hence p is a uni-
formly continuous function of the argument wo + TV. But for b > 0 crbitrary
we know rrom uniform continuity of p that there is I(6) > 0 so that Ip(wo(c) +
W1(C)) -P(wo()+V 2( ))I < 6 if I(Wi ()+Cwo))-(T (C) +w ))[ < (6), i.e. if
IWI(C)-Wvr2 ( ) < 1(6). Hence suPL<e<L IP(wO(C)+WI(C))-p(wo( )+TV2 ( ))I <
6 if SUpL< <L Jw1( ) - VV2( )j < 1(6) and so SuPL< <L Ip(wo( ) + WI(')) -
p(w0(W ) + W2())l -. 0 as SUpL<<L IWl(p) - W2()I -. 0. But this argu-
ment implies by the special nature of f( ,v(C)) that suPL<4<L ff(r,Vj(r)) -
i(r,v2("))i - 0 as suP-L< <L IVl(T')-v 2 (r) -- 0. From (1.11), (1.12) we see

then that supL< <L iY'l()-Y'2()i 0 3 fsuPL< <L Ivi()-V2(C)I -, 0

so T is a continuous map of CI([-L, L); R2 ) into itself.

Now note that (1.8) implies that if v is in a bounded set of C 1 ([-L, L]; R2 ), y
will be in a bounded set of C2 ([-L, LI; R 2 ). This is because f( , v(C))' is uniformly
bounded.

Hence T is a continuous compact map of Cl([-L, L; R) into itself.

Now define fl = {U,W E C([-L,L]; R 2 ) such that W(-L) + wo(-L) <

a, W(L) + wo(L) > P6; W( ) + w'(C) > 0 if a < W(C) + wo(C) :_ P; and
SuPL<<L(IU() + uo(V)[ + jW(R) + wo(0[ + IU'() + u,() + [W'() + w ()1} <
M + 1}. fl is a bounded set in C'([-L,L]; R2 ).

In addition fl is open. To see this let U, W E fl. Note the definition of Q

implies the set Ad=f{f E [-L,Ll; a < wo(C) + W( ) < /} is a closed interval
[ ,I,2]. For if A # [ 1, 2] for some 1, 2 E [-L,L] means by the monotonicity
of wo + W on [C1,C2] that for some Z V [C1,(2] either wo(Z) + W(Z) = a or
w0() + W(Z) = , ith w'() + W'(Z) < 0 in either case. Of course this would
imply U, W V Q1, a contradiction.

So we have A = [C1,C21 and denote m = minfEA(W() + W'()) which is

positive. Since wo + W E C l [-L,L] there is a larger interval A6 C_ [-L,L],
A$ D) A, A 6 = [ 1 -6, 2 + 6] for some small 6 > 0, so that w(C) + W'(C) _ -n for

Let D = min(minC.6<<5d(o(M) - W(C) - ), min-.L<t: 1 6( - wo(,b) -
W(e)). Since wo(C) - W(C) - 3 > 0 on [C2 + 6,L] and a - wo( ) - W(C) > 0 on
[-L, C1 - 6] we see D > 0.

Now let U, W be such that

Sup (IU( )I + IU"C~l + IW()I + IW"()I) < ,
-Lg-fL

IJ- Ir-e<



Ii.

where v = min(Drm/4). Consider E [-L,L for which a <w0({) + W() +
W() _ /3. If we can show w'(C) + W'(C) + V(C) > 0 we will have proven fl is
open. But we see in this case that

O() + W(W - W < - - Wo(W) - w( T < )

and hence wo( ) + W(C) - 3 < D/2, a - wo(C) - W(C) < D/2. But this implies
by the definition of D that C E (Ci - 6, C2 + 6). So we have shown a < wo(C) +
W(C) + W(C) < 58 implies C E A 6 . Now we compute at this value C:

WW) + W'() + W(V ) > I + W(C) :m/4 > 0.

Hence 11 is open.

Now we recall a well known theorem of Leray-Schauder type (see for example
Mawhin [10], Corollary IV.7).

Prop 1.2 Let X be a real normed vector space, S1 an open bounded subset
of X, and T a compact map of X into itself. If zero is an interior point of Q? and
0 9TO for all 0 E afl, 0 < p < 1, then T has at least one fixed point in M.

In our problem we take X = C' ([-L,LI; R 2 ) and T, fl is as defined above.
The origin in an interior point of n2 since the constraint w ( ) + -W'() > 0 is
satisfies for all e [-L,L] if (U,W) is a small C'([-L,L]; 1R2 ) perturbation.
Note 0 E 8ff, = ATO, y E (0,1), means that there is a solution (u( ), w(1)) of
(1.1), (1.2), (1.3) which satisfies w'(C) > 0 if a < w( ) < 58 and either

(i) w'(Co) = 0, a < w(Co) < P for some Co E (-L,L)

or

(ii) p-..4<<L{<u()I + Iw(,)1 + u'(W)I + lw'(C)I} = Mo + 1 or both (i) and (ii).

Let us first consider possibility (i). In this case either a < w(CO) < R, W(CO) =

a, or w(CO) = 8. We consider these cases separately.

Case 1: a < w( O) < /, w'(Co) = 0. In this case there are three possibilities,
either w"(Co) < 0, w"(Co) > 0, or w"(Co) = 0. If w"( o) < 0 then w( O) is a
local maximum which implies w'(C) < 0 for some C < 10, IC - OI small. But
this implies a < w(C) < 3 and violates the requirement that w'(1) > 0. An
analogous statement holds if w"( o) > 0 and now w(1) is a local minimum. The
case w"( O) = 0 is excluded since w"( O) = 0, w'(o) = 0 implies via (1.2) that
u'(Co) = 0. But in this uniqueness of solutions for (1.1), (1.2) as an initial value
problem (see [7], Lemma 4.1) u'(Co) = 0, w'(Co) = 0 implies u( ) = u(CO), w(C) =
w(fo) for all C E [-L, L] and hence we cannot satisfy (1.3), w- < a, w+ > 3.

-8-
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Case 2: w(CO) = a, w'(CO) = 0. In this case there are again the three canon-
ical possibilities, w"(Co) < 0, w"(Co) > 0, or w"(Co) = 0. We can immediately
dismiss w"( o) > 0 and w"( o) = 0 for the same reasons as in Case 1. So we need
only consider w"( o) < 0. In this case w( 0) = a is a local maximum. Hence if
we are to satisfy w(L) = w+ > #3 we must proceed through a local minimum at
Cl > fo, i.e. w(Cj) < a, w'(Cl) = 0, w"( I) _> 0; w(C) < a, u/( ) < 0, 0_< & < 1.
Again w"(t) = 0 is impossible since that forces u'( l) = 0 and the uniqueness
theorem ((7], Lemma 4.1) is contradicted. So we need only consider w"( I) > 0.
From (1.2) we see u'(I) > 0, u'(CO) < 0 which implies u has a local maximum at
a point CO < C < C1, u'(() = 0, ut"(() < 0, and again Lemma 4.1 of [7] telis us
u'(C) < 0. Since p'(w) < 0 for w < a this implies via (1.1) that w'(C) > 0 which
contradicts the fact that w is decreasing on ( 0, ti). Hence w"( o) < 0 is excluded
as well.

Case 3: w(CO) = 6, w'(Co) = 0. Here again we see we can exclude w"( o) < 0
and w"( o) = 0 immediately. If w"( o) > 0 it follows that w(fo) = P is a local
minimum so to satisfy w(-L) = w- < a there must be 1 < CO where w( j) > 0
and w has a local maximum, w(C) > /3 on (1, 0). But the same reasoning as in
Case 2 yields a contradiction.

From Cases 1,2,3 of (i) we see there is no solution of (1.1), (1.2), (1.3), p E
(0,1), (u( ) - uo(C), w(C) - wo(C)) in 12 for which (i) can hold. So all solutions of
(1.1), (1.2), (1.3), p E (0,1) in N must satisfy w'( ) > 0 in a < w() < f3. But
now the hypothesis of our theorem says (ii) cannot hold either. Thus we conclude
from Prop 1.2 that (1.1), (1.2), (1.3) possesses a solution for which u( ) - u0(f),

o(C) - w0(C) is in N.

To complete the proof we follow Da.fermos [7] and extend the domains of u, w:
Set =~ ; ) .+, w(; ) =w+, > L,

= L) _u, =(;L - < -L.

The extended pair {u(.,L),w(.,L)} form a sequence in C*((-oo, oo); R2 ) and by
virtue of the hypothesis of theorem we know sup-L< <L{Iu'(C; L)I + Iw'( ; L)I} <
M. So the sequence {(u(.;L),w(.;L)} is precompact in C°((-o,oo); 33). Thus
there is a subsequence L, -- oo as n -- * oo since that (u( ; L), w( ; L)) --

(u( ),w( )) uniformly as n -i. o on (-oo,oo). As in Dafermos [7] u( ),w( )
is a solution of Pc and by its construction w'( ) >_ 0 if a < w( ) < P. But by
the same reasoning used in Cases 2,3, this connecting orbit must satisfy the more
restrictive requirement w (C) > 0 if a < w( ) < 3. This completes the proof of
Theorem 1.1.

Having established Theorem 1.1 we can now proceed to weaken the hypothesis
that the first derivatives of u, w be a priori bounded. This is done below.

% S-
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Theorem 1.3 The conclusion of Theorem 1.1 remains valid if (HO) is ceplaced
by the a priori estimate

sup (u(M) + Iw(+) ) <- M1  (Hi)
-g<f<L

where again M1 can depend on u_, u+, w_., w+, e, p but is independent of p and
L.

Proof. All that we need to show is that if a solution of (1.1), (1.2), (1.3) satisfies
(H1) it satisfies (HO). But this is precisely the nature of estimates (3.7), (3.8)
given by Dafermos in [71. For completeness we rederive these .stimates.

Let y(C) = u(t)O, f(y) = (P())" Then (1.1), (1.2), (1.3) have the form

eY"( = ,f(y(O)' - & ,

y(-L)= y, y(L) = y+

where y- = (u.-,w-_), y+ = (u+, w+).

We see easily that

(exp(C2/2e)y'()) - =(Vfky)y(C) exp(-))
e2

and hence by integrating from 0 to we have

exp(e2 /2e)y'( ) - y'(0) - (Vf(y)y'(C) exp(C2 /2,))dC.(o
Since SUp.L<<L(U I + Iw(OI) _< we know u IVfIy)I _ R, R independent i,%

of L. So

lexp( 2/2c)y'( )I < ly'(O)I+ y'()i exp(-)d,

and using Gronwell's inequality we find '22.

1Io 5 IIOj exp (2 R~j _ .525

2 e

But the function has a maximum value of (A) so we see

R2 _

y'( )1 <51 y'(O)j exp(-), -L < 5 L, -

.5,:

- 0 - .'



where R is independent of L. So SUPL< < ly'( )I will be bounded independent
of # and L if ly'(0)I is bounded independent of p and L.

Now we derive the bound on Jy'(0)I First note

(_C2'r~('r) r2- 2

V)= z exp(- /2e) + If(y) - fTy()exp(T 2 \dT
e e 0  2e/

where
fL iL

z f exp(_- 2 /2e) = y(L) - y(-L) - I f"y('7j)dr
-L e J-L

+ --r(y())yexp r dC.

Now set C = 0, L = 1 in the above expressions. Then we have

y'(O) =z + -*(()),

S2 = y(l) - y(- _) - f(y(,r))dr

+ -f(y())exp( 2 C)drdC.

C 2e

Since plf(y(r))J 5 constant (independent of p and L) we see that Iy'(O)l is bounded
independent of / and L. This completes the proof.

Theorem 1.3 gives a sufficient condition for solvability of P, when the bound-
ary values w- and w+ are in different phases. We now give a result which applies
to the case when w-, w+ are in the same phase.

Theorem 1.4 Assume u- > u+ and w,w+ < a (u- < u+ and w-,w+ >13)
and there is a constant M2 such that every possible solution of (1.1), (1.2), (1.3)
satisfies the a priori estimate

sup (Iu(C)l + Iw(C)l) 5M 2. (H2)-£<C<L

Here M2 can depend on u-, w+, e, p but is independent of p and L. Then their
exist solutions of Pe which satisfy the constraints w( ) < a (w( ) > P), i.e. these
ipecial single phase data connecting orbit problems possesses single phase solutions.

Proof. Theorem 1.4 is a special case of Thin 3.1 of (7].

- 11 -
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2. The a priori estimates

In this section we derive the a priori estimates needed to apply Theorems 1.3
and 1.4. Before doing this we give some useful lemmas. The first is a result from
[7] Thin. 4.1 or [8] Thin. 2.2.

Lemma 2.1 Let (u(l),w(l)) be a solution of (1.1), (1.2) on an interval
[-L,L], p > 0. Then on any subinteral (11,12) for which p'(w(l)) < 0 one of p

the following holds:

(i) u( ) and w(l) are constant on (I1, 12);

(ii) u(I) is a strictly increasing (or decreasing) function with no critical points in
11, 12); w( ) has, at most, one critical point in (11, 12) that necessarily must be a
maximum (or minimum);

(iii) w( ) is a strictly increasing (or decreasing) function with no critical point in
(11,12); u(C) has, at most, one critical point in (l, 12), that necessarily must be a
maximum (or minimum).

We will also need the following results.

Lemma 2.2 Let (u(e),w( )) be a solution of (1.1), (1.2) on an interval
[-L,Lj, u > 0. Then on any subinterval (ihe 2) for which P'(w( )) > 0 the
graph of u(e) versus w( ) is convex at points where w'( ) > 0 and concave at
points where w'( ) < 0.

Proof. We simply compute dwu as follows:

du u'(e d (~~ u', UVW -UIWrL

W- T 0 7M; zW, I(t)2

Now use (1.1), (1.2) to see that at u(C),w(C) we have

rU p(p'(w(C))w'(C)2 + u'(C)2 ) (du)2

e~~ ~ ~ /.Lw T IC3(I M + ( ;i-)) W'(W

which proves the result.

Lemma 2.3 Let u(t), w( ) be a solution of (1.1), (1.2), (1.3) on an interval
[-L,LI, p > 0 with w'(C) > 0 if a < w( ) < 0. Then u,w can have no local
maxima or minima at points t for which tv(r) = a or w( ) = 3.

Proof. Since w'( ) > 0 if a < w(C) _5 /certainly w has no local maxima w
min-r at points where w(t) = a. On the other hand if u(C) has a local maximum

- 1%- V.
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or minimum at such a point then u'(C) = 0 there and hence by (1.1) u"(C) = 0
as well. Differentiating (1.1) with respect to we see ptt(a) > 0 and p"(,3) < 0
implies u"'( ) 3 0 at such points so u could not have taken on a local maximum
or minimum.

We can use Lemmas 2.1, 2.2, 2.3 to prove the following useful statement
regarding possible connecting orbits in the two phase data case. (Notice extrema
of u are denoted by r's, extrema of w are denoted by a's.)

Lemma 2.4 Assume w- < a, w+ > 0 and let u(C),w(C) be a possible
solution of (1.1), (1.2), (1.3) with ju > 0 for which w'(C) > 0 when a < w() :5 3.
Then one of the following holds:

(0) No extremal points: u( ), w(t) have no local maxima or minima on [-L, L].
They are non-constant and monotone, w being monotone increasing.

(i) One extremal point: (a) w(C) has a minimum at some a-, w(a_) < w-_;
u(C) is decreasing on [-L, L.
(b) w(C) has a maximum at some a+, w(o+) > ut+; u(f,) is increasing on
[-L, L.
(c) u( ) has a maximum at some r-_ (or r+); w(r_) < c( (or r(-r+) > 3)
and w(e) is increasing on [-L, L].
(d) u(e) has a minimum at some -r; a < w(r) < 3 and w(A) is increasing
on [-L, LI.

(ii) Two extremal points: (a) u(s) has a local maximum at r-_ (or r'+) and a
local minimum at r; w( ) is increasing on [-L, LI and w-. < w(T_) < a or
w+ > w(+) > P, a < w(,r) < l.
(b) w(C) has a minimum at a-, w(a-) < w-; u(C) has a local minimum at
r, r > o-, a < w(T)< /.
(c)w(C) has a maximum at o'+, w(+) > w+; u(C) has a local minimum at
r, 7 < a+, a < W(T) </i.

(iii) Three extremal points: (a) u( ) has local maxima at r-, r+, and a local
minima at r, r- < r < r+; w(C) is increasing with w- < w(r-) < a,
a < W(i) <6, 16 < W(T+) < W+.
(b) t(4) has a minimum at a-, w(a-_) < to and a maximum at a+,
w(a+) > w+ and u(C) has a local minimal at r, a- < -r < a+, a < w(r) <

(c) w(f) has a minimum at a, w(o_) < w-, u(C) has a local minimum
at r, a < w(r) < 3 and a local maximum at r+, 3 < w(r+) < w+,
Cf_ < 1 < r+.
(d) w(C) has a maximum at a+, w(a+) > w.+, u( ) has a local maximum
at r_, w_ < to(r_) < a, and a local minimum at r, cr < to(r) <,6.

- aC -
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Proof.

(0) No extremal points: The non-constancy follows from Lemma 4.1 of [7] and
w-# tw+.

(i) One extremal point: Either u( ) or w( ) is monotone. (a) If u( ) is decreas-
ing then w( ) can have either a maximum or minimum. But Lemma 2.1
(ii) says it must be a minimum.
(b) If u( ) is increasing the same reasoning as in (a) says w( ) can possess
only a maximum.
(c,d) On the other hand if w( ) is monotone it must be monotone increasing
since w- < w+. By Lemmas 2.1 (ii), 2.2, 2.3 we see the only possibilities
are a maximum for u at -r- (or -r+) with w(Tr_) < a or w(Tr+) > 3 or a
inimum at r with a < w(r) < 0.

(ii) Two extremal points: First consider the case of one local maxima and one
local minima for u( ). (a) Since w(C) must be monotone increasing Lemmas
2.1 (iii) and 2.2 say the local maximum occurs where w < a or to > 13 and
the local minimum occurs where a < to < 13.

One local maxima and one local minima for w(f) is impossible with u( )
monotone. For if al, a2 are such that w has a local maximum at al and
a local minimum at a2 we must have w'(al) = 0, w"(a') < 0, w'(r2) = 0,
uo'(a 2 ) > 0. Then (1.2) implies u'(al) > 0, u'(a2) < 0.So monotonicity of
u would yield u a constant. Lemma 4.1 of [7] would then give to a constant
as well which contradicts w- 3 w+.
(b) If w(C) has a minimum at ... and u(C) has a local minimum at r then
certainly w(ar_) < to. That means r > a. and either a < w(r) < 0 or
w(r) > P. But as w'(r) > 0 Lemma 2.1 (iii) says w(r) > 0 is impossible.
(c) If w( ) has a maximum at a+ and u( ) has a local minimum at r
analagous reasoning to (b) above applies.

If w( ) has a minimum at a-_, w(o..) < to., u cannot have a maximum
on [-L, L]. This is because such a ma:imum must occur at rT, rl > or-
implying u'(._) > 0. This contradicts Lemma 2.1.(ii). Similarly, if w(C) has
a maximum at a+, w(a+) > w+, u cannot have a maximum on [-L, LI.
Again this is because such a maximum occurs at rl, ri < a+ implying
u'(o+) < 0 contradicting Lemma 2.1.(ii).

(iii) Three extremal points: (a) First w cannot have three extreme points by
Lemma 2.1.(ii) but u can. By Lemmas 2.1.(ii) and 2.2 we see they must go
sequentially as a local maximum, local minimum, local maximum.
(b) If w has two extreme points one must be a minimum at a., w(a-_) < w-
and the other a maximum at a+, w(a+) > w+. Lemmas 2.1, 2.2 imply that
the only possible extremal point for u is a minimum at r, a- < r < r+,
a < w() </8. If u has two extreme points and w has one then either
(c) to has a minimum at a-, w(o'-) < to. or

-14-



(d) a maximum at a+, w(o+) > w+. In (c) w'( ) > 0 for ( > a- so
Lemma 2.1.(iii) says u must have a local maximum at r, ,3 < w(r+) < w+
and a local minimum at a < w(r) < P, - < < +. In (d) w'( ) > 0,
( < a+ so again Lemma 2.1.(iii) says u must have a local maximum at' r_,
W._ < W(T'_) < a and a local minimum at r, a < w(r) < P, r7 < T < a+.

This completes all possible cases since extremal points at w = a or w ---
are excluded by Lemma 2.3.

Below are illustrated sketches in the u-w plane of the possible cases described
in Lemma 2.4.

U U

U * 
U.

U- U+
tI! I I , I ! ! -

w.. w w.a w

i~o)
0

U U

U-
U-- U+

I I I I -

w a w w W a 3w w
i(b) i(c)
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Theorem 2.5 Assume w- <a , w+ > P(w_ > 6, w+ <a ). Then there is
a constant M1 such that every possible solution of (1.1), (1.2), (1.3), 0 < :_ 1,
with w'(1) > 0 (w'(C) < 0) when a _ w(C) _ 13 satisfies the estimate

sup (Iu(W})I+IW(0I) -M1-. (HI)
-L<C<L

MI depends at most on u-, u+, w-, w+, E, p and is independent of u and L.

Theorem 2.6 Assume u+ < u- and w-, w+ <a (u- < u+ and w,w+ >
B). Then there is a constant A12 such that every possible solution of (1.1), (1.2),
(1.3), 0 : p :_ 1, satisfies the a priori estimate

suP (u(M)I + Iw(e)I) _ M'2 . (H2)
-L;<C</

M 2 depends at most on u-, u+, w-, w+, e, p and is independent of P and L.

Corollary 2.7 If w- < a, w+ > # (w- > 1, w+ < ) there e.ist solutions
of P which satisfy the constraints w'(C) > 0 (w'(C) < 0) when a < w( ) _5 0, i.e. %

C'-



the one phase change data connecting orbit problem possesses a one phase change
solution.

If u+ < u and w-, w+ < a (u- < u+ and w_, w+ > P) there exist solutions
of P which satisfy the constraints w( ) < a (w( ) > 3), i.e. the single phase data
connectinq orbit problem possesses single phase solutions.

A

Corollary 2.7, our main result, follows directly from Theorems 1.3, 1.4, 2.5,
2.6. So we pass on to verifying Theorems 2.5, 2.6.

Proof of Theorem 2.5 We consider the cases listed in Lemma 2.4 for the choice

W- < a, w+ >/8. The proof for w-_ > /l, w+ < a is similar and is omitted.

(0) No extremal points certainly implies the assertion of the theorem.
(ia) Since u is decreasing we have u+ _< u( ) _< u. Since w has a minimum at

a, we need only bound wo from below. To do this we follow the method
given in [7], Theorem 4.2.
Assume a- > 0 (similar arguments hold if a- < 0). Integrate (1.2) from
ap- to L and use w'()_) = 0. Then

Co'(L:) + j! -w'( )d = -pu(L) + pu(cr-).

Since w'(L) > 0 we have

L: Cw'(1)de: < -pu+ + ptu(-). (2.1)

If C _ max{1, a-}, then w'( ) < Cw'(4) on (C, L) so that (2.1) implies

w(L) - u(C) = w'( )d < fe ,'(e)d < _ f ,'()d < -P.U+ + iU( ,_)

and hence

W (C) 2! W + Au+ - Au(a-). (2.2)

Since u+ _< u(o,_) <_ u-, 0 < uz < 1, we see w(l) is bounded below
independently of p and L if 1 <_. ,,

If 0 < a- < 1 integrate (1.2) from a- to C where a- < < 1. Then we see

CUI( + =w'(()dC -pU( ) + PU(a). (2.3)

-18-



Since w'(C) > 0 on (a-,L).we see Cw'(() > 0 on (a-, ) and hence

W'() <- -pu(k) + pu(c-), a- < < 1. (2.4)

Integrate (2.4) from a- to 1. We then see

ew(l) - ew(or-) <p (u(a-.) - ()d

or

ew(1) - p (u(o._) - u(C))de <ew(a_). (2.5)

Since u+ < u(C) < u- and w(1) is bounded from below by (2.2), (2.5)
provides the desired bound from below for w(a-) when 0 < o- < 1.

Cases i(b),i(c) are proven similarly and in fact i(a-c) fall into the cases treated
in Theorem 4.2 of [7]. Case i(d) was not possible in [7] because of the assumption
of hyperbolicity. Nevertheless the above method still works as we show below.

In case i(d) w(C) is increasing so to_ < w(C) < w+. Again assume r > 0 as
the uase r < 0 is similar. First integrate (1.1) r to L. This yieldsL

eu'(L) + j Cu'(C)dC = pp(w+) - ip(w(r)). (2.6)

Since u'(L) > 0 this implies

Cu'(f)dC :5 up(w+) - pp(w(r)). (2.7)

If C 2_ max{1, r }, since u'(C) > 0 on (C, L) we find u'(C) _5 Cu'(C) on (1, L) and

u1, -u() -- U'()dC <_ Cu'(Od < tu'( )d <_ pp(w+) -. p(w()),

"(C) u +,, - pp(w+) + pp(w(r)). (2.8)

Since a < w(r) < P, we see for 1 < r, u(r) is bounded from below independent of
p and L. Again if 0 _< r < 1 integrate (1.1) from r to . where r < < 1. Then
we ee

,u'(f) + ,Cu'(C)dC = pp(w( )) - pp(w(,r)).

Since (u'(() > 0 on (r, we find

etu'(C) pp(w(C)) - p(w r)),

- 19 -
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and integrating from r to 1 we see

eu(1) - eu(Tr) 5 pj p(w(t)) - p(w(r))d

and

Cu(1) - " p(w( )) - p(w(r))dC eu(-r). (2.9)

We know max(u-, u+) >_ u( ) so u is bounded from above. Since w( ) is bounded
(2.8), (2.9) implies u(C) is bounded from below on [-L, LI independently of p and
L.

ii(a) Assume u has a local maximum at r_, w(r_) < a. (The case w(r+) > #
is proved in a similar fashion.) Then the local minimum is at T, -_ < r,
a < w(T) < f. For w we know w- _< w(l) _< w+. Trivially there are two
possibilities we must consider:
,r > 0. In this case proceed exactly as in the proof of i(d) above and we find
u(t) bounded from below and certainly from above by u+.
,r <0. If r < 0 then -r- < 0. We will show u(7r) is bounded from above.
To do this consider the first case r" < -1 and then the case -1 < Tr- < 0
in a manner similar to i(d). This proves u(T-) will be bounded from above
while it is certainly bounded from below by u.

So we find either u(T) is bcunded from below or u(r_) is bounded from
above where the bounds are independent of 1 and L. In the first case we
use i(c) on -L < C :< r to bound u( -) from above; in the second case we
use i(d) on r- < t L to bound u(-) from below. Again the bounds will
be independent of p and L.

ii(b) If r 2: 0, we follow the argument of i(d) to note that u(,r) is bounded from
below. Here we use the fact that a 5 tw(C) _5 w+ for r < C L. Since
u(r) is bounded from above by max(u-, u+) we know u(C) is bounded from
above and below. Finally we used result i(a) on [-L, r] to see that w is
also bounded from below at a- E (-L, r').

If r < 0 then using argument of i(d) again we find

u(C) > u_- - pp(w_) + AP(w(r)) (2.10)

if C :5 min{-1, r}. But a < w(r) < 8 so (2.10) shows u(r) is bounded from
below if r < -1. If -1 < r < 0 then argument i(d) can be used again. We
give the argument for completeness. First integrate (1.1) from r to where

(-1, ,r). This yields

eu'(C + Cu'(C)dC =pp(w(C)) - pp(w('r))- (2.11)

- 20 -
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On (C, r), Cu'(C) > 0 so the integral in (2.11) is negative. Thus we see

eu'() __/(p(w()) - p(w(T))). (2.12)

Now integrate (2.12) from -1 to r. This implies that

eu(r) _ cu(-1) + p p(w(C)) - P(W(7'))dC. (2.13)

Now w( ) <_ w(r) on (-1, r) since ar < w(r) < 3. Inspection of the graph
of p (see Figure 3) shows that

P p(w()) - p(w(Tr)) 2! p(a) - p(P). (2.14)

I

a W(C) W(r)3 8w
Figure S.

(Notice p(w(C)) - p(w(,r)) becomes positive if w(C) decreases below i)
Inserting (2.14) into (2.13) we find

cu(r) > eu(-1) + p(T + 1)(p(a) - p(p))

and hence
eu(,r) > eu(-1) + A(P(a) - p(/3)).

So u(r) is bounded from if " <0 0. Now use i(a) on (-L, r) to see that
w(cr_) is bounded from below.

ii(c) This case uses the same argument of ii(b). In this case we need

p(w(r)) - p(w(C)) c(t) - p(Pi) (2.15)
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when w( ) w(r). (It is not necessary that p(w) -- oo as W -+ oo.)

iii(a) In this case w is monotone increasing so w- < w(C) < w+ on [-L,L]. As
to u either r... >_ 0 or it is not. If r+ > 0 we use an argument of type in
i(c) to conclude u(r+) is bounded from above. If -r+ < 0 then r_ < 0 and
again we use an argument of the type in i(c) to see u(7--) is bounded from
above. So if r+ _ 0, u+ _< u(T'+) _< bound from above; if r+ < 0, then
u- < u(r) _ bound from above. But now we have reduced the problem
to ii(a) which we have already considered.

iii(b) Either r > 0 or it is not. If r > 0 we use an argument as in ii(c) to find for
">1

U('r) >_ U+ - P(w+) + P(p(w(i-)). (2.16)

Since a < w(r) _5,3 (2.16) shows u(-) is bounded from below. If 0 _< -r < 1
we again proceed as in ii(c) to see

eu(r) _ eu(1) + p(p(a)- p(8)).

So u(T') is bounded from below.

If r < 0 we proceed as in (ii)(a) to again show u(r) is bounded from below.
So in either case u(7-) is bounded from above and below. We now use i(a)
on [-L,,r] and i(b) on [r,L] to show w(a_) is bounded from below and
w(o,+) is bounded from above. Of course in each case we use the fact that
the value of w at the end point a is bounded from above and below sincea_ <5 (a) <

iii(c) If r 5 0 proceed as in ii(b). First note that if C _ min{-l, r) then

U(C) > u- + JA(p(w_) - P(W(T)).

Since a < w(r) < /, u(') is bounded from below, if r < -1. If -1 < < 0
we find

())+ L p(w()) - p(w(,r))deu(,r) _>eu-l +; *-

where w(e) w(,r), -1 < r. In this case figure 3 tells us

PMV~) - pMw-0) : P(a) - p(P3)

so

eu(r) > eu(-1) + p(p(a) - P(p))

and u(r) is bounded from below for r < 0.

If r > 0 then r+ 2_ 0. We then estimate u(7+) from above as in i(c). So if

C > max{r+, 1) we find

u(C) < U+ + pp(w(r+)) - AP(w+). (2.17)
'A



Since /3 w(r+) w+ we know u(r+) is bounded from above if r+ > 1. If
0 r r+ < 1 we find

eu(r+) <eu(1) - A i+ p(w()) - p(w(r+))dC. (2.18)

But /3 w( ) _ w+ for f E [r+, 1] so the right hand side of (2.1S) is

bounded. So if r < 0 we see u(r) is bounded from above and below; if
r > 0 then u(r+) is bounded from above and below. Notice that for the
second possibility we have reduced the problem to Case ii(b)which we have
already considered. For the first possibility we apply i(a) on [-L,T] to

bound w(o') from below remembering the end point w(r) lies in (a, /3).
Finally apply i(c) on [-r, L] to bound u(r+) from above again using the fact
that W(T) E (a, P).

iii(d) The proof is analagous to iii(c). This completes the proof of the theorem.

Proof of Theorem 2.6 In this case we never leave the hyperbolic regime p'(w) <
0. To see this consider the situation w- < w+ < a. By Lenma 2.1 either w( )
is monotone and hence we trivially have w- < w(f) :_ w+ or u(C) is monotone
decreasing and w(C) possesses at most of critical point which must be a local
minimum. Thus w(4) < a on [-L, L], Now apply Thim 4.1 of [7]. The other cases
are done analogously.

3. Existence of solutions to the Riemann problem: the case when
{(u (e), w,( ))} are uniformly bounded

In this section we consider the applicability of the following result of Dafermos
([7], Thin. 3.2) to prove existence of solutions to the Riemann problem.

Prop. 3.1 For fixed e > 0, let (u,(C), w4 (C)) denote a solution of P,. Sup- S
pose the set {(ue(f),wg(C));0 < e < 1) is of uniformly bounded variation. Then
{(ue(C), wc(t))} possesses a subsequence which converges a.e. on (-co, oo) to func-
tion (u( ), w(C)) of bounded variation. The pair u (f), w( ) provide a weak solu-
tion of P.

In order to apply Prop. 3.1 we need the desired estimates on {(u.(), we())}
in both the two phase and one phase data case. First, however, we state an
assumption on p(w).
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Assumption 3.2

(a) Assume p(w) -+ +-o as w -. -00.
(b) Assume p(w) -- o as w +oo.

Now we can state an existence theorem for the one phase data case.

Theorem 3.3 If u- > u+ and w_,w+ < a and Assumption 3.2(a) holds
(or u+ > u- and w-,w+ > 03 and Assumption 3.2(b) holds) the sequence
{(u(C),w());O < e < 1} as given by Corollary 2.7 possesses a subsequence
which converges a.e. on (-0o,oo) to function (u(C), w()) of bounded variation.
The pair u(-), w(-) provides a solution to the Riemann problem with w(f) < a
(W(T) > )

Proof. Since the sequence {(ue(C), tv(C))} is such that p'(w,(C)) < 0 and either
wto( ) < a or w,( ) > /3 Theorem 4.2(ii) of 17] combined with Assumption 3.2 (a)
or (b) yields a uniform in e,C bound for {u,( ),w,( )} on (-o, 00). Lemma 2.1
applied to the case p = 1, -0o < C < 0o, shows {(u,( ),wE(f))} is of uniformly
bounded variation. Prop. 3.1 thus yields the result.

We now move on to the two phase data case.

From now on unless otherwise stated we assume Assumption 3.2(a), (b) holds
as well as the following condition of genuine nonlinearity.

Asaumption 3.3 p"(w) > 0 if w < a; p"(w) < 0 if w > 3.

We now proceed to give a sequence of lemmas based on Lemma 4.1 [81 that
will help us in our search for an estimate on {H()wg( )}. lere and for the rest of
this paper {ue( ),we(C);0 < e < 1} denotes the solution of P, given by Corollary
£.7 when w_- < a,w+ > a. (Results for the case w- > 3, w+ </3 can always be
obtained by analagous arguments given for the w- < a, w+ > ,8 case.)

Lemma 3.4 The list of possible graphs for (u4 (C), wg(j)) given in Lemma 2.4
is still valid when L = oo.

Proof. The argument given in the finite L case still applies.

Notation. Points of minima, maxima of u( ), ,( ) are denoted as in Lemma
2.4 with the addition of a superscrit e to emphasize the dependence on e.

Lemma 3.5 In cases 0, i(a,b,c) of Lemma 2.4 (,,(),w,(C)) are uniformly
bounded independent of E on (-0o, oo), i.e. there exists a constant N depending
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at most on u-, u+, w-_, w+, p and independent of e, 0 < e < 1, such that

sup Iut(C)i + Iw,()I -< N. (3.1)

Proof.

0. Obvious.

i(a). In this case uc( ) is monotone decreasing and hence u+ _< u( ) u<-._ on(-oo).Dnoedw.!( ) =w'( ). dw.,( ) [ -1 )1/2
---o' ). Denote = We claim 0 < j- < -(P(7C ))) on

(-oo, a]. For if not set

dw,(~ -1/}1 = max{I E (-oo, a']; du + -
> dv(W-EW

Since w, has its minimum at a_, - = 0 there and so C1 < a'- must exist.

A direct computation shows

e dw P, -w (w 2d -ud -1 du2 (3.2)

so ( = 0 at - 1. Furthermore, by the definition C1 we have 0 <

I - P'(l-()) on (t ,all) and thus Z(7( )) < 0 on ( j, a)

and a(-L (C)) < 0 at 1 = . On the other hand differentiation of (3.2)
shows

e - (- -() = -P"(,( ))w,(C)(-W -(C))2 t

Since Assumption 3.3 implies p"(w,(Cl)) > 0 and we know w'( j) < 0 we
d2 d ddhave e7(4,u ()) > 0 at C = ti, a contradiction. So we see (-t()) u _

0 on (-oo,a'_l. Hence for any t E (-oo,alj, !L(C) < d(-oo) =
+I"(--1 )1/2. Now let us compute

w,(01.) i- edu== ,
,,v- du ,'

S- du - du

and thus

WI(o') - _ _- (u_ - ue(a )) (3.3)
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Since u. :5 u(a_) < u- (3.3) shows wc(al) is bounded from below inde-
pendent of e.

i(b) The proof is similar to i(a).

i(c) In this case w( ) is monotone increasing so w- < wjt() _ w+ on (-oo, oo).
Dchiote (4= ). We claim 0 < w < +-'w()/ on

(-oo,r,_]. For if not set

max{ E (-o00, T]; - +(-p,(we(()) 1 / 2}

where u,(C) has its maximum at T_, wj(T) < a. (The case when the
maximum is at 4 , w(Tr) > 3 is done similarly). Since u(t) has a local
maximum at T where yw( ) = 0, C1 must exist with 1 < T-.

A direct computation shows

d ((duP(

so d (()} =0 at = i. Furthermore by the definition of C1 we

have 0 < < ±(-p(We( )))1/ 2 on (C1,,r!) and thus d (u(' ~<

0an (f~r So we have "2<O0at ~ .On the other%

hand differentiation of (3.4) shows eaZ = p" w e()w(4
.d2

at fr and we have e ( ) > 0 at = 1, a contradiction. So

we se- d(du ( )) < 0 on (-oo,r.j and hence for any E(-oo,rj],

0 < V(C) < tft(-oo) = +(-i'(w,_))1/2. Now we compute

u(r)
u,(T) -- = f u= dw <(-'(w_)) 1 / 2 (W(,-.) _ ,_).

div

Since w- :5 w(r_) : w+ we see uE(r!) is bounded from above independent -S

of e for w(,r!) < a. As noted above analagous reasoning shows that if
uw(r4) > 0 we have

ut,(,) < U+ + (_(W+))1/ 2 (w+ _ W(4.)) .

and since w-< w,(4'e) _5 w+ an e independent bound on u, ",r(+) is pro-
duced.

- 26 -.

-%

5% 5 ~ . *~~*S~* ....... S *~. ~~*.~S ~ s.' - ! :



Lemma 3.6 Let re denote the points where u,( ) takes on its local minimum,
a < we(r') < . If there is a subsequence {T "- } of {r}, fn --* 0+ such that either

(a) T'" > m > 0 or r' < -m > 0, m a constant independent of e, or

(b) ue(Tr') is bounded from below independent of e,

then for Case i(c) {(ue.(1),we.(C))} satisfies (3.1).

Proof. Assume r'- < -m > 0. Then u'(C) < 0 on (-oo, rl"] and ue() >
-MU'.( ) on (-oo,r]. Integrate (0.5) from -o to "re and we see

-m(U,(ri') - Cu,) < _ (C)dC = p(w(T")) - p(w-)

and hence 1a(-P(wi," ) +p(,-)) - u- , u(r). (3.5)
m

Since we(C) is monotone w- < we(C) :5 w+ and we see u,(-rin) is bounded from
below independent of e. The case r'n > m > 0 is done similarly. So in (a) or (b)
u(,r') is bounded from below and hence {(ue,,(C),we,,(t));0 < en < 1) satisfies
(3.1).

Lemma 3.7 In Cases ii(a), (b), (c), iii(a), (b), (c), (d) assume {re} satisfies
the hypothesis of Lemma 3.6. Then {(u,,(M),we,,());0 < en < 1} satisfies (3.1).

Proof ii(a). Let T!7 denote the point where ue, (C) has its local maximum,
W C"_() < a. The method of proof for i(c) in Lemma 3.5 shows uej(i") is
bounded from above independent of e.; u,(TI) is bounded from below by u.

. If re" < -n < 0 we know u,() > -muE.(M) on (ie",r e). Integrate (0.5)
from r! to r'&. We see

-M(un (r') - ui (T.-)) <*Tw,. (r")) - pXw, (re")) (3.6)

Inequality (3.6)combined with the monotonicity of we, () gives the bound on
u., (7

" 'i) from below. If rn > m > 0 integration of (0.5) from ren to oo produces
the bound from below on u , (r). So if the hypothesis of Lemma 3.6 holds,
{(UnM),wen(0)),0 < en < 1} satisfies (3.1).

Hi(b). First consider the case when r& < -m < 0. Proceed as in the proof of
Lemma 3.6 to (3.5). Since a < we, (r) <f8 (3.5) delivers a bound on u,. (rc)
from below. Now use the method of proof of Lemma 3.5 1(a) to bound w, (C)
from below. If 71n > m > 0 (or u,.(ri) is already bounded from below) an
analagous argument works.
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11(c). Proceed as in the proof ii(b) above only now use the argument of Lemma

i(b) to bound w4 ,, (C) from above.
111(a). First bound the two local maxima of u,,,(C) from above as in the proof
of Lemma 3.5 i(c). Now follow the proof of ii(a) above to bound ut,, (re") from
below.

Iii(b). Proceed as in the proof of Lemma 3.6 to bound u,, (r e ) from below. Then
bound we,, (a') from below and we,, (a') from above via the proof of Lemma 3.5
i(a),(b).

ii(c). First bound the local maximum of u, ( ) from above by the method of
Lemma 3.5 i(c). Then bound the local minimum uE,(r'n) from below by the
method of ii(a) above. Now use the method of Lemma 3.5 i(a) to bound we,, (0 _1 )
from below.

iii(d). The proof is analagous to iii(c).

We are now in a position to state the main results of this section.

Theorem 3.8 Assume w- < a, W+ > P (or w-. > a, w+ < 3) and let
(uf(0, w()) denote the solution of Pe given by Corollary 2.7. Let Assumptions
3.2, 3.3 and the hypothesis of Lemma 3.6 hold. Then f{u,,( ), w,,(); 0 < en < 1}
possesses a subsequence which converges a.e. on (-oo, oo) to a function u( ), w( )
of bounded variation. The pair u('), w(f) provides a solution to the Riemann
problem.

ProofIf w-_ < a, w+ > 0 use Lemmas 3.5, 3.6, 3.7 and Prop. 3.1. If w-_ > 6,
w+ < a we can prove a similar set of lemmas to Lemma 3.5, 3.6, 3.7 and again
use Prop. 3.1.

- Remark 3.9 If the hypothesis of Lemma 3.6 does not hold then r' --, 0,
uq(r) -- -oo as e -. 0+.

Proof. If r' 74 0 as e --. 0+ then there is a subsequence re* } so that lr'k I >
m > 0, m a positive constant independent of ek. From this subsequence we can
extract another subsequence so that either r" > m > 0 or " < -rn < 0, a
contradiction. On the other hand if r' --+ 0 and ue(,r ') 7 -0o then of course the
hypothesis of Lemma 3.6 holds.

From Remark 3.9 we see that the only situation which may cause difficulty
vis-a-vis solvability of the Riemann problem (at least under Assumptions 3.2, 3.3)
is when 7" -* 0, u,(r') -* -0o as e -- 0+. This possibility is the subject of the
next section. Of course if we were to make the hypotheses that u,( ), is uniformly
bounded independent of e, 0 < e < 1, when a < w,(C) _< 0 then existence of a
solution to the Riemann problem follows trivially from Lemma 3.6.
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4. Existence of solutions to the Riemann problem: the case when
ug(re) --+ -0o as r" --+ 0

In this section we discuss the possible consequences of the case when ue(.re)
-oo as r' - 0. (We use the notation of Section 3.)

Our first goal is to show u,(), w,( ) has a pointwise a.e. limit. To do this we
need a sequence of lemmas. The first one is modeled on Thrn. 2.3 of [8]. We let
Assumptions 3.2, 3.3 hold in this section.

Lemma 4.1 Let (uE(C), w,(C)) be a solution of P, as given by Corollary 2.7
when w. <, w+ > 3. Let U = min(u., u+). Then if uj() has a local minimum
at r" with a < we(Tr) < 9 (as in Cases i(d), ii(a),(b),(c), iii(a),(b),(c),(d) of
Lemma 2.4 with L = oo, M = 1) we have the estimates

r0 2
NO(o 2 -01) >  uf(4)d > (0 2 - al) - (P(f8)- P(f), (4.1)

WO -P(a)) (< U(W) <_ No, -00 < f < 00. (4.2)
It -,r I l

Here (a1, 2) C (-o, 0o) and No is a constant independent of e.

Proof. The bound from above on u'(,f) in (4.1), (4.2) follows from the proof of
Lemmas 3.5, 3.6, 3.7. So we now proceed to get the bounds from below. Ve first
check i(d). Fix f < oo sufficiently large so that w,(-I) < a, w,(f) > 6. Assume
for the moment ue(-e) _< ue(l), and let 0 > -e be such that uE(6) = u,(--
Then as shown in Figure 4 we have u,(,) _5 u,(-I) on (-e,0), u,( ) > ue(-e) on
9< < I when -1 < r" < 9 < t. From (0.10) we know

u4( ) - u,(-,))" + (u,() - u,(-,))' = p(w,)' (4.3)

and integration of (4.3) from -e to 8 shows

ete(0) -eu' (-f) - (U() - ue(-1))d4 = p(w()) - p(We(-)). (4.4)

But u'(0) > 0, u'(-t) < 0 and hence we have

S(U(-1) - ut(1))d < p(wj(9)) - p(w(-t)). (4.5)

Now since we() > w,(-e) we know the right hand side of (4.5) is bounded from
above by p(/3) - p(a). So for any (al, a2) C (-t,0) we have

J (e ) - ,,())d : p(<() - p(a) (4.6)
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and hence

u,(-t)(o2 - al) - (P8) - p(ak)) _5 ,J()dC.

Letting I - +oo we find

U 02 - l)-W ) p(,)) _C ue( )d . (4.7)

If (al, a2) C (9, 1) then ue(C) _> u(-t) and we see

U4C U(02 - 01) J u(,)d. (4.8)

U,, (-)

Figure 4.

Fmally if -t < al < 9, 9 < a2 < e we write

uE()d = u()d + u,( )dC

nd use (4.7), (4.8) to again obtain (4.1).

To get the bound from below in (4.2) we observe from Figure 4 that when
t4<f <ewe have

(ut(-t) - U())(f - Te) _ (UC(-) - U())d. (4.9)

From (4.9) and (4.6) we see

(U,(-t) - U(C))(O - 're) < p(p8) - p(a). (4.10)
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Now letting t -. oo we obtain (4.2). If -t < < < " we again obtain (4.2) and
of course if 0 < f _ t we trivially get (4.2)." The proof for u(-e) > u(t) is
analogous.

Without going in details we sketch the appropriate constructions for ii(a),
iii(a) if ue(-) _5 u,(1) in Figure 5. Cases ii(b), ii(c) are done like i(a). Cases
iii(b), (c), (d) are done like ii(a). In all cases crucial to the argument is the fact
that we(O) > we( ) so that p(w(O))-p(w,(()) :_ p(3)-p(a) and inequality (4.6) is
obtained without any monotonicity restrictions on w,(C) (in contrast to Thin. 2.3
of []).

.U4l

m i I I--"

U,,'

Figure 5. Cae ii(a). Integrate (4.3) from C to 9.
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u,(t)

-• *

Igre 6. Case u::(a). Integrate (4.3) from C to 9.

This completes the proof of the lemma.

Lemma 4.2 Let {u,(),w,( ); 0 < e < 1} be a solution of P, as given by
Corollary 2.7 when w- < a, w+ > fl. Then for any given compact subset S of
(-cc, 0) or (0, oo) there exists constants K and E0 (depending at most on u-, u+,
w-, w+, p, S) so that

sup(lue( )I + jw,( )J) < K for 0 < e < 60.

4Es

Proof. Let S+ C (a, b], S_ C [-b,-a], 0 < a < b < cc. Then for e sufficiently
small fr'l < a/2 and (4.2) yield sup u,( )j < K. We now need to get a similar

f ES±
estimate on w,( ). In Cases i(a), (b) of Lemma 2.4, the proof of Lemma 3.5, 3.6,
3.7 yields a uniform in E and C, (-oo < C < cc), bound on w,( ) where as in
Cases 0, i(c), ii(a), iii(a) w,() is monotone so that trivially w- < w,() < w+ for

E (-oo, oo). Hence the only cases left to check are ii(b), ii(c), iii(b), iii(c), iii(d).

Case ii(b). On S+, w( ) is uniformly bounded in e, so we need only check ,

S-. Let 17 E S-, C E S+. For e sufficiently small q < Te <(. Integrate (0.10) from
q to C to obtain

- P 77) + t ,()d =p(w(()) - p(we(7)). (4.10)

Since u'(() > 0, u4(y7) < 0 (4.10) implies

u'C)d < p(.,(¢)) - (77))
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and integration by parts yields

Cut(() - Iru,(r) - j( u()d - w,(l .  (4.11)

Now use (1.1), (4.2) to bound the left hand side of (4.11) from below

C'uC. _((3) - pGf)) _-No - No(C - qi) < p(wt()) - p(we(77)). (4.12)

IK - rl

Since a < w,(() < w+ we see p(w,(()) < P(13). Hence combined with this fact
and I( - rTe - a/2 we see that (4.12) yields

-bull - 2,(Afl) - -)) _ bNo - p() < -P(we(77)) (4.13)
a

Since w,(, ) < 1, (4.13) and the fact that p(w) - +00 as w -- -oo show w(,7)
uniformly bounded in e, 17 for e sufficiently small, 17 E S_..

Cases ii(c), iii(b). Proceed in a similar fashion as Case ii(b).

Case iii(c). From the mean value theorem there is C E [1,2] so that u'(() =
u,(2) - ue(1) so by (4.2) eu(C) is uniformly bounded. So for this " and arbitrary
1 e S_ we again derive (4.10) and since u4(r) < 0 we find

e4(C) - ] U(5)4 < w(O()) - (,())

_5 P66) -Ae (7()).

The same argument as given above for case ii(b) shows we(71) uniformly bounded
in e, q for e sufficiently small, q E S_.

Case iii(d). Proceed analogously as in Case iii(c).

Another set of bounds on (u,( ), w,(C)) is provided by the next lemma.

Lemma 4.3 Let {u,(Ce,w,(C);0 < e < 1} be a solution of Pe as giver by
Corollary 2.7 wien w- < a, w+. > ft. Let a'_, a' denote the points of local
minima and maxima for we( ) and rT the point of local minima for uE( ) (when
they exist). Define 9 = nin(u_,u+),
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Then in cases of Lemma 2.4 (with u 1, L = oc) we have the following estimates:

In cases 0, i(a,b,c), (3.1) holds.

In the rest of the cases u,( ) satisfies (4.2) and w,( ) satisfies

w- < w,() < to+ in Cases i(d), ii(a), iii(a);
B;- <_ w,( ) < w+ in Cases ii(b), iii(c);
to- < wE() < B+ in Cases ii(c), iii(d);
B; w,( B < in Case iii(b).

Proof. For Cases 0, i(a,b,c) the result was given in Lemma 3.5 and Cases i(d),
ii(a), iii(a) are trivial.

For Case ii(b) follow the method of proof of Case 1(a), Lemma 3.5. Upon
reaching inequality (3.3) replace uc(a'-) by the bound from below given by (4.2).
Similarly in Case ii(c) obtain the bound for w,(4):

W+~ - we(a4)

and again bound u,(a.) using (4.2). Case iii(c) follows like ii(b), Case iii(d) follows
like ii(c), and Case iii(b) uses the arguments of both ii(b) and ii(c).

We now combine Lemmas 4.2 and 4.3 to get the following improved estimate
on {u(c), W(c);0 < e < 1}.

Lemma 4.4 Let {ue(),we( );O < e < 1} be a solution of P, as given
by Corollary 2.7 when w- < a, w+ > 6. Then on any semi-infinite interval
(-o, -a] or [a, oo), a > 0 there exists constants k and eo (depending at most on
u_,u+,w-, W+,p,a) so that %

sup (1 u()1 + IW(f)1) -< k,
(-oo,a] (4.14)

sup (lu(C)l + Iw,(C)I) < k,
[a,oo)

for 0 < e < co.

Proof. The bounds on u,(t), w,() in Cases 0, i(a,b,c) are known from inequality
(3.1). For the rest of the cases the bounds on u,( ) follow from inequa-lity (4.2).
So we only have to produce the relevant bounds on w,( ). Here again Lemma 4.3
tells us Case i(d), ii(a), iii(a) are trivial so let us move on to Case ii(b). In Case
ii(b) we know from Lemma 4.3 that B- < wc(C) < w+. Since r . 0 as e. 0+,
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B will be bounded from below for sufficiently small e if a" 74 0 as e -, 0+. On
the other hand if a' --- 0 as e --+ 0+ it means the minimum of we on (-oo, oo) is

taken on at o' where Jae 1 <C C, a constant. If -C < o < -a then Lemma 4.3
tells us w,(a) is bounded from below. If -a < a!_ < 0 then the minimum of we
on (-0o,-a] is taken on at = -a. By Lemma 4.2 we know w,(-a) is uniformly
bounded from below, and so we see we(4) has a uniform (in , e) bound from below

on (-oo, -a]. The other cases, i.e. ii(c), iii(b), (c), (d) follow similarly.

Lemma 4.5 Let {u(C),w,( ),0 < e < 1} be a solution of P, as given by
Corollary 2.7 when w- < a, w+ > R. Then sequence (u,( ),w,( )) possesses a

subsequence which converges a.e. on (-co, co) to functions (u( ), w( )). On corn-
pact subsets of (-co, 0) U (0, co) the convergent subsequence is bounded uniformly
in e with uniformly bounded total variation. The limit functions have bounded
variation on compact subsets of (-c0, 0) U (0, cc).

Proof. On the finite domain [-1, -1/2] U [1/2,2] (= R 2 ) Lemma 2.4 (with A =
1,L = oo) and Lemma 4.4 combined with Helly's theorem ([10], p. 222) provides
a convergent subsequence { (u. () W 2 (6)) which converges boundly to functions
u(f),w() defined on R 2 ; u(C), w( ) have bounded variation R 2 . Now consider
IUe2(0),we (M} on [-3,--1/3] U [1/3,3] (= R 3 ). Again we extract a convergent
subsequence which converges boundedly to the functions u(6), w(C) on R 2 and
extensions of u( ), w(t) (also denoted by the same letters) on R 3 . Continue this
process on each Rn, n = 2,3,4,... Finally extract the diagonal element of each
enumerated sequence. The sequence of diagonal elements is convergent at each
C # 0 to functions u( ), w( ) defined on (-co, 0) U (0, co). The remarks regarding
compact subsets of (-co, 0) U (0, oo) follow directly from Helly's Theorem.

Lemma 4.6 The functions u(C), w(C) defined by Lemma 4.5 satisfy the
boundary conditions

U(-00) ( , u(-cc) .
W(-o) W_ , W(+0)= w+.

Proof. We follow the proof of Thm. 3.2 of [7]. Let y,( ) = ( 0E() f(y) = )

Then (0.10), (0.11) imply

= (Vf(y,)y'( ) exp(y-))

and integrating from 1 to , > 1, we find

ee- pty-)y'(( e)

ep(C2 /2e)y"( ) - exp(1 )Y 1 -

E|
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Since by Lemma 4.4 IYG )I is uniformly bounded by k on [1, co) we know Jty)

R for some constant R > 0. Thus

Iexp( 2/2e)y()1:5 l exp( R )y'(1)I + ( f C2

and using Gronwall's inequality we find

ep(e/2,)yA( )1 Iexp( -)y'(1)Jexp[-( )

and hence

Now note that

exp(C2
1 '2e)y'( ) Z1 +i ± 1 ()/x(C

= , + -f(y,( )) expj) -fy~)exp(-)

(gy,£ Cexp(-)dCd

and hence i

Here = 2 ex1\ 2C + 1 i~C1y,,(('exp ' 2dC. (4.16)

2 exp '22d =y,,(2) - yed') f2-

2 (4.17)
+- ~ i~~ C)) ex p(T) dC.

So from (4.16) we see

14~(1)1IZ2 x( , + Iqe()

:5 jz21 exp(- j,) + ~(.8

From (4.17) and the inequality

jexp(- !)d 2! exp(2)

-2e *s.
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,onst, const. 2
IZ21 - (const. + + -'-exp(-))exp(-)

and hence by (4.18) that

J(1) const exp( 7) (4.19)

Now insert (4.19) into (4.15) to find

cost. (2R - 2R +8 -  (4.20)

2 2e

So for > R+(R2 -2R+ 8)1/2 (4.20) shows that lY'(C)I -+ 0 as e - 0+. Recalling
that (ue(), we( )) converge pointwise to u( ), w(f) we see u(,), w( ) must be
constants for > R + (R 2 - 2R + 8)1/2. Since for any e > 0 lir u() =u+,C--.0o

limw w() = w+ these constants must u+, w+. A similar argument works for
C-- . ,

Corollary 4.7 The functions u(C), w(C) defined by Lemma 4.5 satisfy the
conditions

-() = U-_, ,W = U+t< -M, f > M "

for some positive constant M.

Lemma 4.8 The functions u( ), w(4) defined by Lemma 4.5 satisfy

P(W)' - ' = 0
-U W = 0 (4.21)

in the sense of distributions at any # 0.

At any point 0 - 0 of discontinuity of u(C), w(C) the Rankine-Hugoniot jump
conditions are satisfied

pw(Co+)) - pw(CO-)) - fo(u(1o+) - u(Uo-)) =0, (4.22)

-((o+) - U(Vo-)) - 1ow(Co+) - W(co-)) = 0.

Proof. On any compact subset of (0, oo) or (-co, 0) we have a sequence of solu-
tions of (0.10), (0.11) which converges boundedly a.e. Hence if we multiply (0.10),
(0.11) by Coo test functions with compact support excluding = 0, integrate
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by parts, pass to the limits as the relevant sequence of e's goes to zero, and use
the Lebesgue dominated convergence theorem-we obtain (4.21). Equation (4.22)

follows from (4.21) in the standard manner (e.g. [71, (3.14)).

Corollary 4.7 and Lemma 4.8 take us very close to asserting solvability of
the Remann problem. Unfortunately we still must deal with the behavior of u,
w at the troublesome point I = 0, i.e. we have yet to show u, w solve (4.21) in
a neighborhood of = 0. In fact the derivation of the Rankine-Hugoniot jump
condition for weak solutions [8] shows that u, w will be a distributional solution of
(4.21) at =0 if unp(w( )) = lix+p(w( )),

f..#O _O+(4.23)

lira U(O)= lin U(),(,f 4--0- --. +

where the indicated limits exist (finite).

Before pursuing the study of (4.23) we first show that u( ), w( ) are locally
integrable. First we make

Assumption 4.9 Assume

--wI . 00 as Iwi -- o.

Lemma 4.10 If Assumption 4.9 holds then {w,( )} has absolutely equicon-

tinuous integrals and the functions u(0), w(C) defined by Lemma 4.5 are locally

integrable in (-oo, oo).

Proof. First we know from Lemma 4.1 (4.1) that ju,()j is locally integrable.
Since a subsequence of u,( ) converges to u(C), Fatou's theorem implies the limit
function u( ) is locally integrable. To show local integrability of w( ) we proceed
indirectly. A theorem of D. Vitali ([11], p. 152) tells us that if {w,( )} have

absolutely equicontinuous integrals, then w( ) is locally integrable and moreover

lim wen,( )dC = w( )d6. (4.24)

Here the limit is taken on the a.e. convergent subsequence of w,() denoted as
we( ). Recall that to have an absolutely equicontinuous integral we need for

every b > 0 there is a £(b) such that if 0 < ar2 - al < £(6)

If wf( )dlj < 8 for all e > 0.

5'5.
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We now establish absolute equicontinuity of the integral of w,( ) by using
the argument of Lemma 3.4 of [8] (which is itself a variant of the test of de la
Val-Poussin [11], p. 154.)

First notice however that in i(d), ii(a), iii(a) of Lemma 2.4 there is nothing
to prove since w,(6) is monotone and hence uniformly bounded in I, e. Also recall
Cases 0, i(a), (b), (c) were covered by Theorem 3.8. So we need only consider
Cases ii(b), (c), iii(b), (c), (d).

Let us consider Case ii(c). Given any interval (1, f 2 ) we either (I) divide it
into the subintervals (e1,,t] where w- < w,(6) fl and [t,,e 2 ) where w ,(1),
we(t,) = 83, (II) we( ) ; on (f 1 ,e 2) or (III) w,(e) < on (tl, 2).

First we consider possibility (I).

Multiply (0.10) by u, and (0.11) by -p(w) and add. If we define i7(u, w) =

f,- p(s)d( and 7,(C) = 7(u ( ), we(C)) we see

e~ '(E) + ei'( ) - - gu ( )2 + ,p(w,( ))w'( )2 = 0 (4.25)

Let !7 = max(ri(u_,w-),t(u+,w+)). On any sub-interval (or,a) C [t,,t 2 )

if 7,(a') > 7 set C, = sup{ E [t,a'); 7,(C) <!i7}. If 7,(a') _< set Ce = inf{ E

(a, a'); re( ) > 1} if this set is not empty. Similarly if r7e(a') > i set 0, = inf{ E( 12, 21;77,( ) j 7} while if 77,(a') < 37 set 0, = sup{ E (o,'a);ri(C) 1}.

Observe that 1() > 0 and r7'(0,) < 0, and

(1()- !7)dlt < (77(E) - ffdC

(4.26)
- - j ( d

So if we integrate (4.25) over (,,) and use (4.26) we see

( - )d +( I (u'C )2- w ) (4.27)

_< -U,(e)P(W,(Ge)) + U,((,)p(we(Ce)).

By the definitions of 9,, C, we see rj(u,(9,),w,(9,)) and r/(u,((),w,((,)) are uni-
formly bounded from above and since we(8,), w,((,,) are greater than 13, 77 is convex
at these values. This implies u,(O), w,(O,), u,((,), w,((,) are uniformly bounded
in e. Hence the right hand side of (4.27) is bounded by a constant K independent
of e.

Now since -If p(6)ds --* o as w -- oo for arbitrary b > 0 there is a

wO >_ P so that
(UW) <  -c for all w > 0wo.
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We then set I(S) = Fix al, 72, 0 <c 2 - al < I(S). We note

for any al, a, O1 E (,t4, a2 E (te, t2

w] ()=1 wf()d + we( Id

- ,) + i (o + 2-6(u,(),wj()))d

__. - al) + (a2 - t,)wo

+ 6 J ,(u,(),wE( ))d.

Now use (4.27) with a 2= a2, a = te and we see

J <( 6)d ( < te- a) + ( ,2 - t,)Wo + 6-(K + (a2 - (2)). C 2K(4.28)
__ (0-2 -7!)(0 + wo + g-)+ 6 < 8.

Ifo 4 1, a 2  _ t6

f w()dC <L (wo + 4r67(u,(), we(C)))d. <6 (4.29)

and if a1 , a 2 < t, ] ,,(t)d < 6(a2 -al) < . (4.30)

Also since w,(,) > w- we easily see

J I ,e()d 4 > w_(a2 - al) (4.31)

>-I,,-I(4Or -al) >_ -6.

So we see for (I) that (4.28)-(4.31) imply

I 7we()dfl :5S f 0O< 0 2 al <()

A similar argument of course works for (II) while (III) is trivial. So in ii(c)
we know wE( ) possesses absolutely equicontinuous integrals. Cases ii(b), iii(b),
(c), (d) are done in a similar fashion. As advertised above Vitali's theorem thus
tells us w( ) is locally integrable and (4.24) holds.
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The next Lemma follows almost identically from Lemma 3.3 of [S].

Lemma 4.11 The four limits which appear in (4.23) always exist (finite).and

(4.231) is always satisfied. Equation (4.232) is satisfied if the sequence {f u,( )df}
(taken on the convergent subsequence of Lemma 4.5) is absolutely equicontinuous.
Furthermore the relation -(p(3) -p(a)) _< limc,&.__ -p(w( )) +lim, 4 o+ p(w( )) <
0 holds in general.

Proof. Let {uC(W), we(C)} denote the convergent subsequence of Lemma 4.5. Note
that since w,( ), u,() are piecewise monotone as (-oc, oo) (Lemma 2.4 with
L = oc) then the limit functions u( ), w( ) are also. Hence the set of points of
continuity (in fact differentiability) of u, w is dense in any finite interval.

Now let C and 0 be points of continuity of u( ),w(C), C < 0 < 0. From
the mean value theorem for every small e > 0 we can find E E V - el/2, ],
e E La, 91/2 + el/21 so that

1/2 = ,) - C ,,(C - /2), eI/ 2WI(Ce) = we(e) - ,,,()

,I/U' (0,) = U(6 + el/2) _ ue(e), el/2we(e) = W.(01/2 + el/2) _ W,(').

By Lemma 2.4 there are constants K 9 , KC so that

IeW/2,'(C)II e l I/2.'(¢) w < K,f ~(4.3)
le w de,) _0< :5 , Ic/w(,l_ e

for e sufficiently small. (Of course K 9 , KC maybe becomes unbounded as 9, --. 0

but for the moment C, 9 are fixed.)

Now we integrate (0.10), (0.11) on ( ,OE) obtaining

eu'(ee) - ,,'(W) + o,,,,(o0 - G,,,(ce) - .,,e ( )d (4.33)
=W00 - A

e (0') - ew',(Ce) + Ou,(O) - G We(C ) - we(A)d4I.(4.33)%
= (+

Now let e - 0+ in (4.33), (4.34). Since 8, C are points of continuity of u, w we find

by virtue of (4.32) that

OU(R) - CUM() - p(w(M)) + P(,(C)) = lim ,,(C , (4.35)
0--+ Je
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ew(O) -. CW() + u(e) - uM() = j .w(C)d', (4.36)

where in (4.36) we have used (4.24) i.e. the absolute equicontinuity of the integrals 0

of wc(C). Notice the limit on the right hand side of (4.35) exists since the limits

on the left hand side exist. From (4.1) we see that limE-,O+ f u(9)dl=S(C,) 

satisfies U(C - 0) - (p(/3) - p(a)) < S( , 0) _< No(( - 9). By Lemma 4.4 for fixed
C < 0, S(, 9) is continuous in 9, 0 > 0, 19 small and for fixed 9 > 0, S(C, 9) is
continuous in C, C < 0, I1 small. 'p

Now since Iw( )I may be infinite only at , - 0 (again by Lemma 4.4) pointwise
limits of ii(b), (c), iii(b), (c), (d) of Lemma 2.4 shows that if Iw(0)l = oo, w must
have one of three shapes shown in Figure 7.

In all three cases (I), (II), (III) we see

a'IWO(¢1- :5 w( )Jd ,

i8w(0)l <5 Iw(C)ldC. Z,

But since w(C) is locally integrable (Lemma 4.10) we see

Ur+ Gw(0) = lim Cw(C) = lir w(e)d = 0.
(-o-- .0+

(-0-

Since u( ) has the shape of (I) near 0 and u( ) is locally integrable (Lemma
4.10)

m OU()= lim Cu(C) =. '
0 0,0+ C-0-

Now let 0 --# 0+, 0 - 0- along a sequence of points of continuity of u, w and
possibly extracting a further subsequence so that S((, 0) converges we find

lrm -p(W(O)) + lim p(w(C)) = + S(C, 6),

0--0- 9-.0+(--.0- %

rn U(+)= Jim U(C),

and (9 .2 3 1) is always satisfied. Moreover if f: fu(e)dl is absolutely equicon-
tinuous Vitali's theorem tells us we can pass the limit through the integral in
(4.35) and hence show (4.232) holds as well. (In this we have of course S((,9) =

limf u( )d .) Also the bounds on S(C,0) show that p(a) - p(P3) _< - lim-O+
p(w(f)) + lim(-.o- p(w(()) < 0 holds in general.
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Case (1): Infinite minimum at =0.

\~0el

ww

C~~Cam (11): Infinite mmiimumma-maxi0.m

I Figure .

Remark 4.12 As tie may have more than one critical point the argument

used in [8) to show that the absolute equicontinuity of fol Ut(f)d.', is also necessary

-48z



.. 2 QTT V_7 T---77TY I ,tt 
l ' tT

to have (4.322) hold does not seem to apply.

I
Theorem 4.13 The functions u( ), w( ) defined by Lemma 4.5 provide a

solution of the Riemann problem provided the pressure p equilibriates across the
stagnant phase boundary at - 0, i.e.

im pw())-- lim p(w(C)).6-0- -0

Proof. Use Lemma 4.11.
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